EFFECT OF TROPONIN COMPONENT TN-C ON THE INHIBITION OF ADENOSINE TRIPHOSPHATASE ACTIVITIES OF MITOCHONDRIA AND CHLOROPLASTS BY TROPONIN COMPONENT TN-I

Shojiro YAMAZAKI, Haruhiko TAKISAWA, Yutaka TAMAURA, Shigehisa HIROSE and Yuji INADA Laboratory of Biological Chemistry, Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152, Japan

Received 21 March 1976

1. Introduction

Studies on the regulatory proteins in the muscle contraction system have been extensively performed. The ATPase activity of actomyosin in the presence of tropomyosin is regulated by Ca²⁺ ions and troponin [1] which is composed of three components, TN-I (mol. wt. 23 000), TN-T (37 000) and TN-C (18 000) [2].

During the course of investigations of the energy-transducing processes of oxidative phosphorylation in mitochondria and of photophosphorylation in chloroplasts, it was found that inhibitors exist [3,4], which inhibit the ATPase activities of the mitochondrial coupling factor $1(F_1)$ and the chloroplast coupling factor $1(CF_1)$ and these may play an important role in regulation of the energy transducing system.

In previous reports, it was demonstrated that one of the troponin components, TN-I, strongly inhibits the ATPase activity of AS-particles from mitochondria in a non-competitive mode [5,6] and also inhibits the Ca²⁺-dependent ATPase actity of chloroplast coupling factor 1(CF₁) [7].

As reported in the present paper, it was found that troponin component TN-I inhibits the Mg²⁺-dependent ATPase activity as well as the Ca²⁺-dependent ATPase activity of chloroplast coupling factor 1(CF₁), and that the inhibited activities of the Ca²⁺- and Mg²⁺- dependent ATPase and of the mitochondrial ATPase were restored by adding troponin component TN-C. These results may clarify the regulatory mechanism in energy-transducing processes.

2. Experimental

Troponin was prepared from a rabbit skeletal muscle according to the procedure of Greaser and Gergely [2]. Troponin components, TN-I, TN-T and TN-C, were isolated by DEAE-Sephadex chromatography in 6 M urea [2].

AS-particles were obtained from heavy layer beef heart mitochondria by the method of Racker and Horstman [8]. The chloroplast coupling factor 1(CF₁) was prepared by the method of Lien and Racker [9] and was activated by heat at 60°C for 4 min or by trypsin digestion at 25°C for 6 min. Protein concentrations were determined by the Lowry method [10]. using bovine serum albumin as a protein standard. The measurement of the mitochondrial ATPase activity was performed as follows: before measuring the ATPase activity, AS-particles suspended in 0.5 mM MgSO₄, 0.5 mM ATP, 0.25 M sucrose and 15 mM Tris-HEPES (pH 6.7), were incubated with Components TN-I and TN-C for 15 min at 30°C. After the incubation, an aliquot (25 μ l) was assayed for ATPase activity [5]. The Ca²⁺-dependent ATPase activity of chloroplast coupling factor 1(CF1) was measured by the method described previously [7]. In order to induce the inhibition of the Mg²⁺-dependent ATPase activity of the activated CF₁ by Component TN-I, 50 μl of the activated CF₁ (8 μg) in 8 mM Tricine— NaOH (pH 8.0) containing 0.4 mM EDTA, 4 mM ATP and 2 mM dithiothreitol was added to 50 μ l of each troponin component (14 µg) in 2 mM Tris-HCl (pH 7.5) containing 1 mM CaCl₂. The mixture was incubated at 30°C for 20 min. For measuring the ATPase activity, the mixed solution (100 μ l) was added to the assay solution (0.5 ml) containing 4 mM ATP, 1 mM EGTA, 2 mM MgCl₂, 5 mM phosphoenol pyruvate and 17.5 μ g pyruvate kinase in 40 mM Tris-HCl buffer (pH 8.0). The reaction mixture was incubated for 10 min at 37°C, and stopped by adding 2.0 ml of 3% trichloroacetic acid. The amount of inorganic phosphate liberated from ATP was measured by the method of Martin and Doty [11].

3. Results and discussion

3.1. Inhibition of the Mg²⁺-dependent chloroplast ATPase activity by Component TN-I

The inhibitory action of Component TN-I on the Mg²⁺-dependent ATPase activity is strongly evident when the mixture of Component TN-I and the activated CF₁ in 4 mM Tricine—NaOH buffer (pH 8.0) was incubated in the presence of 0.5 mM CaCl₂ at 30°C. The results are shown in fig.1, in which curves A and B represent the Mg²⁺-dependent ATPase activity of the heat-activated CF₁ in the presence and the absence of Component TN-I, respectively. The inhibition of the ATPase activity by Component TN-I

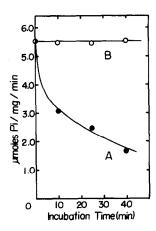


Fig.1. Generation of the inhibitory action of the Mg^{2^+} -dependent ATPase activity of the heat-activated CF_1 by Component TN-I, after Component TN-I (14 μg) and the activated CF_1 (8 μg) in 4 mM Tricine-NaOH (pH 8.0) containing 0.2 mM EDTA, 2 mM ATP and 1 mM dithiothreitol were incubated at 30°C in the presence of 0.5 mM CaCl_2 . Curve A; with Component TN-I. Curve B; without Component TN-I.

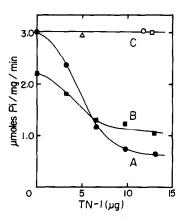


Fig. 2. Inhibition of the Mg^{2+} -dependent ATPase activity of the activated CF_1 by troponin and its components. Curve A; ATPase activity of the heat-activated CF_1 (7.5 μ g) with Component TN-I. Curve B; ATPase activity of the trypsin-activated CF_1 (7.7 μ g) with Component TN-I; Curve C; ATPase activity of the heat-activated CF_1 (7.5 μ g) with troponin (\circ), Component TN-T (\triangle) and Component TN-C (\square).

increases with the time of incubation (curve A). No inhibition was observed in the absence of Component TN-I (curve B). The inhibition of the ATPase activity by Component TN-I did not change when the Ca²⁺ ions added to the incubation mixture were replaced by Mg²⁺ ions.

Fig. 2 shows a plot of the Mg²⁺-dependent ATPase activity of CF₁ activated by heat (curve A) and by trypsin digestion (curve B) against concentration of Component TN-I. The Mg2+-dependent ATPase activity of the heat-activated CF1 decreases with increasing Component TN-I concentration and remains at a constant level of 23% of the original activity at more than 10 µg Component TN-I. The inhibition of the ATPase activity of the trypsin-digested CF₁ by Component TN-I was to approx. 45% of the original activity. Deters et al. reported [12] that the trypsinactivated CF₁ is lacking in the γ and δ subunits of the CF₁ molecule and that these subunits may play an important role in binding CF₁ to the chloroplast ATPase inhibitor. This may be reflected in the difference in inhibition by Component TN-I between the heat-activated CF₁ and the trypsin-activated CF₁. Troponin components, TN-C and TN-T, and troponin do not inhibit the Mg2+-dependent ATPase activity of the heat-activated CF₁, as shown by curve C in fig.2.

Component TN-I was digested by trypsin (1/100 w/w) at 30°C for 5 min. No inhibition of the Mg²⁺-

dependent ATPase activity by the digested Component TN-I occurred. This result suggests that the higher order structure of Component TN-I is closely associated with the inhibition of the Mg²⁺-dependent ATPase activity.

3.2. Effect of Component TN-C on the inhibition of the mitochondrial and the chloroplast ATPase activities by Component TN-I

It is well known that in the muscle contraction system troponin component TN-C reserves the inhibitory action of the actomyosin ATPase activity by Component TN-I [13]. In order to clarify whether Component TN-C serves as a regulatory protein on the energy-transducing systems of mitochondria and chloroplasts, the effect of Component TN-C on the inhibition of the mitochondrial and chloroplast ATPase activities by Component TN-I was examined.

Table 1

Effect of Component TN-C on the inhibitory action of the chloroplast and mitochondrial ATPase activities by Component TN-I

	Ca ²⁺ -ATPase (μmoles P _i /mg p	Mg ²⁺ -ATPase rotein/min (%))
Heat-activated CF ₁	25.8 (100)	3.00 (100)
+ Component TN-C	27.6 (107)	3.22 (107)
+ Component TN-I	6.1 (24)	1.20 (40)
+ Components TN-C and TN-I	29.2 (113)	3.04 (101)

	ATPase activity (µmoles P _i /10 min (%))	
AS-particles	0.34 (100)	
+ Component TN-C	0.35 (103)	
+ Component TN-I	0.07 (21)	
+ Components TN-C and TN-I	0.29 (86)	

The Upper section; chloroplast ATPase, amount of the heat-activated CF₁ and troponin components: 1.4 μ g CF₁, 6.6 μ g Component TN-I and 6.3 μ g Component TN-C for Ca²⁺-ATPase and 7.7 μ g CF₁, 9.8 μ g Component TN-I and 8.0 μ g Component TN-C for Mg²⁺-ATPase. The lower section; mitochondrial ATPase, amount of AS-particles and troponin components: 40 μ g AS-particles, 15.5 μ g Component TN-I and 10 μ g Component TN-C.

The results are shown in table 1. The enzymic activities of the Ca2+- and Mg2+- dependent ATPase of the heatactivated CF1 are markedly decreased by the addition of Component TN-I but they do not decrease with the addition of Component TN-C instead of Component TN-I. Addition of the mixture of Components TN-I and TN-C to the heat-activated CF1 does not cause the inhibitory action of Component TN-I on the Ca2+- and Mg2+-dependent chloroplast ATPase activities. A simialr result was obtained for the mitochondrial ATPase activity. This indicates that the inhibitory action of Component TN-I on the chloroplast or the mitochondrial ATPase activity is restored by adding Component TN-C. Plotting of the enzymic activity of the mitochondrial ATPase in the presence of Component TN-I (15.5 µg) against Component TN-C concentration is shown in fig.3. The ATPase activity of the mitochondrial ATPase with Component TN-I increases with increasing TN-C concentration and at more than 12 µg Component TN-C the activity is completely restored, as seen by curve A in the figure. In the absence of Component TN-I, the full activity of the mitochondrial ATPase was retained upon addition of various amounts of Component TN-C (curve B). From the analysis of curve A, it was found that full restoration of the enzymic activity is caused by a stoichiometric coexistence (1 mole:1 mole) of Components TN-I and TN-C. Hartshorne and Pyun

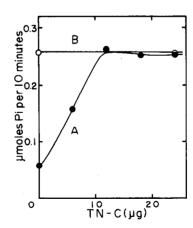


Fig. 3. Restoration of the TN-I-induced inhibition of the mitochondrial ATPase activity by Component TN-C. Plotting the ATPase activity in the presence (curve A) and the absence (curve B) of Component TN-I (15.5 μ g) against Component TN-C concentration.

[14] reported that an anionic polymer such as polyglutamate restores the TN-I-induced inhibition of the actomyosin ATPase activity. Component TN-C is an acidic protein and the ionic charges of Component TN-C may be responsible for the binding of Components TN-I and TN-C, which may induce the restoration of the TN-I-induced inhibition of the mitochondrial and the chloroplast ATPase activities.

References

- [1] Ebashi, S., Ohtsuki, I. and Mihashi, K. (1972) Cold Spring Harbor Symp. Quant. Biol. 37, 215-223.
- [2] Greaser, M. L. and Gergely, J. (1971) J. Biol. Chem. 246, 4226-4233.
- [3] Pullman, M. E. and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769.
- [4] Nelson, N., Nelson, H. and Racker, E. (1972) J. Biol. Chem. 247, 7657-7662.

- [5] Tamaura, Y., Yamazaki, S., Hirose, S. and Inada, Y. (1973) Biochem. Biophys. Res. Commun. 53, 673-679.
- [6] Takisawa, H., Yamazaki, S.; Tamaura, Y., Hirose, S. and Inada, Y. (1975) Arch. Biochem. Biophys. 170, 743-744.
- [7] Yamazaki, S., Takisawa, H., Tamaura, Y., Hirose, S. and Inada, Y. (1975) FEBS Lett. 56, 248-251.
- [8] Racker, E. and Horstman, L. L. (1967) J. Biol. Chem. 242, 2547-2551.
- [9] Lien, S. and Racker, E. (1971) Methods in Enzymology, Vol. XXIII pp. 547-555.
- [10] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- [11] Martin, J. B. and Doty, D. M. (1949) Anal. Chem. 21, 965-967.
- [12] Deters, D. W., Racker, E., Nelson, N. and Nelson, H. (1975) J. Biol. Chem. 250, 1041-1047.
- [13] Eisenberg, E. and Kielly, W. W. (1974) J. Biol. Chem. 249, 4742–4748.
- [14] Hartshorne, D. J. and Pyun, H. Y. (1971) Biochim. Biophys. Acta 229, 698-711.